

Institute	Energy and Mechanical engineering	
Department	Mechanical engineering	

EDUCATIONAL PROGRAM

7M07228 - Advanced technologies of materials processing the name of educational program

Code and name field of education:

7M07-Engineering, manufacturing and civil engineering

Code and classification direction of personnel training:

7M072- Manufacturing and processing

Group of educational programs:

M113 Technology of materials pressure processing

EP purpose: 7

EP type: 7

Period of study: 2 years Volume of the credits: 120

Educational program 7M07228 – Advanced and technologies of the name of educational program) materials processing

was approved at the meeting of K.I. Satbayev KazNRTU Academic Council

Minutes 12 dated « 22 » 04 2024.

was reviewed and recommended for approval at the meeting of K.I. Satbayev KazNRTU Educational and Methodological Council

Minutes 6 dated « 19 » 04 2024.

Educational program __7M07228 - Advanced and technologies of (the name of educational program)

materials processing

developed by Academic committee in the direction of "7M072-Manufacturing and processing"

Full name	Academic degree/ academic title	Position	Workplace	Signature
Chairperson of	Academic Con	nmittee:		
Yelemessov K.	Professor	Director of the Institute of Energy and Mechanical Engineering named after A.Burkitbayev	NAO KazNRTU named after K.I. Satpayev	A
Teaching staff:				
Nugman E.Z.	Doctor PhD, Assoc. Prof.	Head of the Department of "Mechanical Engineering"	Institute of Energy and Mechanical Engineering named after A.Burkitbayev	Hel.
Uderbayeva A.E.	Doctor PhD	Assoc. Professor	Department of Mechanical Engineering	AY
Employers:				
Dyussebayev I.M.	Doctor PhD	Chief Engineer	LLP, Almaty plant "Electroshield"	Scall-
Students				
Baybatsha A.K.		1st year doctoral student	Department of "Mechanical Engineering"	Shif

Table of contents

	List of abbreviations and designati	4
1	Description of educational program	5
2	The purpose and objectives of educational program	7
3	Requirements for evaluating the learning outcomes of an	
	educational program	7
4	Catalog of disciplines	8
1.1	General information	8
1.2	The relationship between the achievability of the formed learning	
	outcomes according to the educational program and academic	
	disciplines	10
5	Curriculum of the educational program	2.1

List of abbreviations and designate

ECTS European Credit Transfer and Accumulation System

BD Basic disciplines

HEI Higher education institution

SMSE State mandatory standard of education

KazNRTU K. I. Satpayev Kazakh National Research Technical University

MEP Modular educational program

NJSC Non-profit joint stock Company

RWMS Research work of a master's student

EP Educational program

PD Profile disciplines

WC Working curriculum

IWMS Independent work of a master's student

EMC Educational and Methodological Council

AC Academic council

1 Description of educational program

EP 7M07228 - "Advanced technologies of materials processing" are focused on learning outcomes that form professional competencies in accordance with the requirements of the labor market.

The objects of professional activity of the master in EP 7M07228 - "Advanced technologies of materials processing" are:

- -digitalization of machine-building production, including informationsensor, executive and control modules, their mathematical, algorithmic and software, methods and means of their design, modeling, experimental research and design;
- theoretical and experimental studies of digitalization of machine-building production for various purposes.

The Master's degree in EP 7M07228 - " Advanced technologies of materials processing" can perform the following types of work and professional activities. Types of professional activities for which graduates who have mastered the

Master's degree program are preparing:

- research;
- design and engineering;
- organizational and managerial;
- installation and commissioning;
- service and operational;
- scientific and pedagogical.

A master's degree in the field of training "Advanced materials processing technologies" should be prepared to solve professional tasks in accordance with the profile orientation of the master's program and types of professional activity:

research activities:

- analysis of scientific and technical information, domestic and foreign experience in the field of development and research of digitalization of machine-building production; study of new methods of control theory, artificial intelligence technologies and other scientific areas that make up the theoretical basis of digitalization of machine-building production, compilation and publication of reviews and abstracts;
- carrying out theoretical and experimental research in the field of development of new samples and improvement of existing digitalization of machine-building production, their modules and subsystems, search for new additive technologies;
- conducting patent research accompanying the development of new digitalization of machine-building production, in order to protect intellectual property objects, the results of research and development;
- development of experimental samples of digitalization of machinebuilding production, their modules and subsystems in order to verify and substantiate the main theoretical and technical solutions to be included in the terms of reference for the implementation of development work;
 - organization and conduct of experiments on the existing digitalization of

machine-building production, their subsystems and individual modules in order to determine their effectiveness and identify ways to improve, processing the results of experimental research using modern information technologies;

- preparation of reports, scientific publications and reports at scientific conferences and seminars, participation in the implementation of research and development results into practice; design and engineering activities:
- preparation of a feasibility study of new digitalization projects of machinebuilding production, their individual subsystems and modules;
- calculation and research of digitalization of machine-building production, control, information-sensor and executive subsystems using mathematical modeling methods, conducting mock-up and testing of existing systems, processing experimental data using modern information technologies;
- development of special software for solving design problems of digitalization of machine-building production, development of technical specifications and direct participation in the design of additive machines and equipment;

organizational and managerial activities:

- development of organizational and technical documentation (work schedules, instructions, plans, estimates) and established reporting on approved forms;
- organization of the work of small groups of performers involved in research, design work and experimental research;
- control over the implementation of measures for the prevention of occupational injuries, occupational diseases, prevention of environmental violations in the process of research and operation of digitalization of machine-building production;

installation and commissioning activities:

- participation in verification, adjustment, adjustment, assessment of equipment condition and setting up digitalization of machine-building production for various purposes, including both technical means and software control systems;
- participation in the coupling of software and hardware complexes with technical objects as part of the digitalization of machine-building production, in testing and commissioning of prototypes of such systems; service and operational activities:
- participation in verification, adjustment, adjustment and assessment of the state of digitalization of machine-building production for various purposes, as well as their individual subsystems, in setting up control hardware and software complexes;
- preventive control of the technical condition and functional diagnostics of digitalization of machine-building production for various purposes, as well as their individual subsystems;
- preparation of operating instructions for digitalization of machine-building production and their hardware and software, development of routine testing

programs;

- preparation of applications for equipment and components, preparation of technical documentation for equipment repair; scientific and pedagogical activity:
- participation in the development of programs of academic disciplines and courses based on the study of pedagogical, scientific, technical and scientific-methodical literature, as well as the results of their own professional activities;
- participation in the formulation and modernization of individual laboratory work and workshops in professional disciplines;
- conducting training sessions with students, participating in the organization and management of their practical and research work;
- application and development of new educational technologies, including computer and distance learning systems.

2 The purpose and objectives of additional educational program

EP purpose:

Training of highly qualified and competitive scientific and pedagogical personnel for design, research, production, technological and management activities in the field of digitalization of materials processing technology by pressure.

EP tasks:

- formation of knowledge of the basics of advanced technologies in the field of materials processing;
- acquisition of theoretical and practical knowledge on the organization, conduct of scientific and experimental research in the field of development of innovative technologies in the field of procurement production;
- formation of knowledge and skills in the analysis of scientific and technical information, new methods of management theory, scientific directions of advanced materials processing technologies;
- formation of knowledge and practical skills of performing scientific and pedagogical activities, the use of computer and distance learning.

3 Requirements for evaluating the learning outcomes of an educational program

As a result of mastering the OP modules, students develop the knowledge, skills and abilities necessary to carry out all types of professional activities in the field of advanced technologies for processing materials by pressure, develop training skills to carry out further training with a high degree of independence, that is, the formation of professional, communication and key competencies that meet the requirements of employers.

The qualification assigned to the graduate is Master of Technical Sciences in EP 7M07228 - " Advanced technologies of materials processing".

4. Passport of the educational program

4.1. General information

	i. General information	
No	Название поля	Примечание
1	Code and name field of education	7M07- Engineering, manufacturing and civil engineering
	Code and classification direction of personnel training	7M072 - Manufacturing and processing
-	Group of educational programs	M113- Technology of materials pressure processing
-	Name of the educational program	7M07228 - "Advanced technologies of
		materials processing ".
	Short description of the educational program EP purpose	The professional activity of graduates of the educational program is aimed at digitalization of procurement production, processing of materials by pressure. In the educational program, students receive professional knowledge on digital design and modeling of new materials, product designs used for the manufacture of blanks, organization, conducting research in the field of materials processing by pressure. He has the skills of designing and developing innovative processes, methods of processing nanomaterials, powder materials, advanced technologies, machinery and equipment. Training of highly qualified and competitive scientific and pedagogical personnel for design,
		research, production, technological and management activities in the field of digitalization of materials processing technology by pressure.
	EP type	New EP
-	Level on NQF	7
9	Level on SQF	7
10	EP distinctive features	No
111	List of competencies of the educational program:	- Ability to follow ethical standards in professional activity; - The ability to plan and solve problems of their own professional and personal development Ability to critically analyze and evaluate modern scientific achievements, generate new ideas when solving research and practical tasks; - The ability to design and carry out comprehensive research based on a holistic systematic scientific worldview using knowledge in the field of history and philosophy of science; - Willingness to participate in the work of domestic and international research teams to solve scientific and educational problems in the field of technologies for processing new materials; - Willingness to use modern methods and technologies of scientific communication in the state and foreign languages;
	Learning outcomes of the educational program:	ON1 Demonstrates the ability to search for new scientific and technical information based on the

	integration of knowledge in educational and professional fields, the use of a foreign language for business communication. ON2 Expands and deepens the scientific worldview, focuses on the theories of the historical development of scientific knowledge to develop relevant research directions in professional activities. ON3 Owns the basic provisions and features of the practical psychologist in the field of management activities. ON4 Demonstrates knowledge of advanced materials, methods of their production and application in digital machine-building production. ON5 Analyzes, processes and applies innovative processes, additive technologies and advanced methods of processing materials by pressure. ON6 Demonstrates knowledge of digital and operational management systems, virtual production, lean production management theory ON7 Applies sound solutions for the design and application of flexible production systems, ensuring the safety of life, environmental and industrial safety of digital machine-building production. ON8 Applies modern methods of computer modeling of objects and technological processes, methods of computer-aided design of the life cycle of products.
	of products. ON9 Demonstrates the ability to monitor production, planning and forecasting the development of technologies for processing materials by pressure.
13 Form of training	daytime
14Period of study	2 years
15 Volume of the credits	120
16Language of education	russian
17 The awarded academic degree	Master of technical sciences
18Developer(s) and authors:	The educational program was developed by the
	academic committee in the direction «7M072-
	Manufacturing and processing»

4.2 The relationship between the achievability of the formed learning outcomes according to the educational program and academic disciplines

N₂	Name of	Short description of discipline	Num			The form	med educ	cational	outcomes	s (codes)		
	discipline		ber of credi ts	ON1	ON 2	ON 3	ON 4	ON 5	ON 6	ON 7	ON 8	ON 9
			Cycle	e of basi	c discipl	ines	I.	I.	I.	I.	I	l
			•		compone							
1	Foreign language (professional)	The course is designed for undergraduates of technical specialties to improve and develop foreign language communication skills in professional and academic fields. The course introduces students to the general principles of professional and academic intercultural oral and written communication using modern pedagogical technologies. The course ends with a final exam. Undergraduates also need to study independently (MIS).	5		v						V	
2	Psychology of management	The discipline studies the modern role and content of psychological aspects in managerial activity. The improvement of the psychological literacy of the student in the process of implementing professional activities is considered. Self-improvement in the field of psychology and studying the composition and structure of management activities, both at the local level and abroad. The psychological feature of modern managers is considered.		v	v							
3	History and philosophy of science	The subject of philosophy of science, dynamics of science, specifics of science, science and pre-science, antiquity and the formation of theoretical science, the main stages of the historical development of science, features of classical science, non-									V	v

_		T							, ,		
		classical and post-non-classical science,									1
		philosophy of mathematics, physics,									1
		engineering and technology, specifics of									1
		engineering sciences, ethics of science,									1
		social and moral responsibility of a									1
		scientist and engineer.									1
4	Higher school	The course is intended for undergraduates	3	v						v	1
	pedagogy	of the scientific and pedagogical								·	1
		magistracy of all specialties.									1
		Undergraduates will master the									1
		methodological and theoretical									1
		foundations of higher school pedagogy,									İ
		plan and organize the processes of									1
		teaching and upbringing, master the									i
		communicative technologies of subject-									1
		subject interaction between a teacher and									1
											i
		a master in the educational process of a									1
		university.	<u> </u>	01 •	11 1 1						
				e of basic							
			\mathbf{E}	lective co	mponen	t					
5		The purpose of the discipline is the	5			V		v			i
		development of technological processes,									i
		the production of all the main types of									i
		rolled products – semi-finished products,									İ
		rails, beams, long and sheet metal, wheel									İ
	Equipment and	bands. The methods of rolling all types of									İ
		product, the equipment used and the									İ
	production	calibration of rolls necessary to									İ
	r	understand the essence of the process are									İ
		studied. The flow of the material during									İ
		rolling of the most important types of									İ
		product is described, for calculating the									İ
		elements of the technological process									İ
6		The purpose of the discipline is to form	5		v	v					
		knowledge and principles in the field of	J		*	•					Ì
		physical foundations and mathematical									1
	Technologies of	theory of plastic deformation. The									
	pressing and drawing	theoretical foundations and practical									
	of materials	method of calculating processes in the									
		technology for metal processing by									i l
		pressure are studied, the methods of									
		pressure are studied, the methods of		l]				·

		1		ı	1	1		1		
		experimental determination of the								
		parameters of the stress-strain state using								
		the methods of coordinate dividing grid								
		and current lines under conditions of								
		plane and axisymmetric deformation								
		during pressing and drawing are								
		determined								
7		The purpose of the discipline is the	5				v		v	
		formation of knowledge of the basics of								
		digital production in mechanical								
		engineering, the methodology of								
		designing additive technological								
		processes. The discipline studies the								
		history of the development of additive								
		technologies, trends in the development								
		of innovative technologies; the basics of								
	Technological	additive manufacturing, the basic								
	processes of additive	principles of additive technologies. The								
	manufacturing	theoretical and technological foundations								
		of the production of products made of								
		polymer and metal materials using								
		additive technologies are considered; the								
		stages of development of technological								
		processes of additive manufacturing are								
		shown and examples of modern								
		equipment for manufacturing products								
		using additive technologies are given.								
8		The purpose of the discipline is the	5						v	v
	research activity	formation of knowledge on the technical								
		foundations of the creative process,								
		conducting scientific research in the field								
		of machine-building complex. The								
		general methods and means of research of								
		technological processes of machine-								
		building production, parameters and their								
		characteristics are studied. The methods								
		of creating new patentable technical								
		solutions, modern methods of conducting								
		scientific research and processing their								
		results are being studied. As a result, the								
		skills of applying advanced research								

_	1						Т			
		methods, identifying new properties and								
		patterns in technological processes,								
		identifying new technical solutions,								
		formulating the novelty of inventions or								
		utility models and their legal protection								
		are acquired.								
9		The purpose of the discipline is to acquire	5			v				v
		in-depth knowledge of mechanical								
		systems in the processing of materials by								
		pressure. The influence of external and								
		internal factors on the unevenness of								
		deformation of the workpiece material,								
		mechanical deformation schemes under								
		various pressure treatment technologies,								
	Mechanical systems	factors affecting plasticity, resistance of								
	in processes of	materials to plastic deformation, methods								
	materials by pressure									
		of analysis and evaluation of plasticity of								
		materials are studied. The processes of								
		destruction of materials and the influence								
		of various factors on the nature of								
		destruction are studied. Modern								
		theoretical, scientific methods for the								
		study of friction processes in the								
		processing of materials by pressure.								
10		The purpose of this course is to provide	5						v	v
		undergraduates with the knowledge and								
		skills necessary to understand, protect and								
		manage intellectual property (IP) in the								
	Intellectual property	context of scientific research and								
	and research	innovation. The course is aimed at								
		training specialists who can effectively								
		work with IP, protect the results of								
		scientific research and apply them in								
		practice.								
		H. I.	Cvcla	of profi	e discipl	lines	I			
		·	•	iversity c	_					
11	1	The goal is to form a knowledge system	5	IVEISILY C	ompone			7.4		
11			3			v		v		
	Virtual Factory and	in the field of new business models,								
	Augmented Reality	business processes and technologies in								
		high-tech industries. The course covers								
		industrial revolutions, Industry								

	_							
		development programs 4.0; modern information technologies and marketing; the creation of factories of the future, their architecture. Digital transformation, principles and management of a digital company. The concept of a virtual factory and the construction of logistics networks for a digital factory. "Digital double", technical and operational data.						
12	Digital design and modeling	The purpose of the discipline is to acquire knowledge of the basics of computer modeling and computer technologies used in mechanical engineering. The technologies of computer-aided design, rapid prototyping, a complex information model and an integrated information environment used in computer systems supporting the life cycle of mechanical engineering products are considered. Perspective directions of development of computer technologies and industrial systems, virtual engineering are considered. Practical application of computer modeling and design methods in the production of products.	5			v		v
13	Advanced Digital Manufacturing Monitoring	The purpose of the discipline is to acquire knowledge of the basics of technical diagnostics, production control systems at all stages of the product life cycle. The discipline examines the monitoring system of production equipment, systems of the MDC/MDA class (Machine Data)	5		v	v		V

14	7	The purpose of the discipline is the	5			v	v			
		formation of knowledge in the field of								
		innovation, innovation management,								
		production of digital engineering. The								
		course examines the role of science in								
		innovative development, innovative								
	Innovative Processes	business; classification and planning of								
	of Digitization for	innovations; methods of engineering								
	Industrial	creativity; theory of solving technical								
	Manufacturing	problems; technological approaches and								
		their characteristics. The prospects for the								
		development of high-tech industrial								
		technologies; automation and robotization								
		of machine-building production;								
		digitalization of production are								
		considered								
			Cycle	of profil	le discipi	lines				
			Co	mponent	t of choic	ce				
15		The purpose of the discipline is to acquire	5		v		v			
		knowledge and skills of working with								
		CAE/PLM design and engineering								
		analysis systems. The discipline studies								
		the modern concept of CAD construction,								
		the place of CAD in integrated systems of								
		design, production and operation of								
	CAE/PLM for	engineering products. The features of								
	Industrial	CAE systems for solving problems of								
	Manufacturing	design, production and engineering								
	Transita taring	calculations of machine-building products								
		are considered; the effectiveness of CAD								
		application in the development of new								
		machine designs; software, information,								
		linguistic and technical support of CAD.								
		Computer-aided design of machine parts								
		and assemblies; engineering equipment								
4.5		design.								
16		The purpose of the discipline is the	5					V	V	
	DYAK. 1	formation of theoretical knowledge and								
	PLM technologies	practical skills in designing machine-								
		building products based on modern								
		software products. The discipline								

	manina DDM (Data	Datil		I	I				
	examines PDM (Produ								
	Management) and PLM	`							
	Lifecycle Management) sy								
	provide product lifecycle m								
	marketing research, design								
	production facility, plan								
	development of the production								
	technical support and m								
	disposal and recycling.	Practical							
	application of the	programs							
	SOLIDWORKS, Compass 31								
	for the formation of the com	position of							
	the product using 3D models.								
17	The purpose of the discipline i		5				v	v	
	knowledge and practical skills								
	of multipurpose equipment in	automated							
	production.								
	The design and technological								
	CNC machining machines are								
	principles of development								
	Multipurpose programs and analysis of								
	software; means of te	chnological							
	manufacturing equipment. The developing								
	implementation of 3D pr								
	considered; features of their m								
	diagnostics and operation. The								
	the software of CNC								
		ssues of							
	debugging and editing pro								
	advantages of multipurpose ed	quipment in							
	digital production.								
18	The purpose of teaching the o		5				v	v	
	to master the theoretical fou								
	creating flexible automated								
	Organizational and systems for the manufacture of								
	technical bases of assembly of machines i								
	flexible automated machine-building production.								
	production of the study is progressive te								
	systems created on the ba								
	development of such fields of								
	technology as mechanical	engineering							

	<u> </u>								
	technology, electronics, computer	1							
	science, economics, production	լ							
	organization, etc. The systems designed	ı							
	taking into account technical and	l							
	economic factors are able to solve the	,							
	tasks of increasing labor productivity								
	improving product quality, and reducing								
	resource consumption.	ì							
19	The purpose of the discipline is to form	5			v	v			
1)	knowledge of the mechanism and laws of				•	•			
	creating composite and powder materials								
	mastering engineering skills in building								
	technological processes for obtaining								
	powder materials. The discipline studies								
	the essence of powder metallurgy								
	Technological prospects and main directions of								
	fundamentals of development. The physical and								
	powder metalurgy technological properties of powders								
	methods of their determination	1							
	mechanical and physico-chemical								
	methods of obtaining powders, methods								
	of choosing a method for obtaining								
	powder are considered. Theoretical								
	foundations of powder forming, theory	7							
	and technology of sintering.								
20	The purpose of the discipline is to form				V			V	
	knowledge of the problems of creation	,							
	research and application of metallic	;							
	nanomaterials, properties of	f							
	nanomaterials and methods of their	1							
	production. The discipline examines the	,							
	Nanomaterials for physical foundations of nanotechnology	,							
	methods for studying nanostructures and								
	processes of panomaterials in								
	processing mechanical engineering. The principles								
	and methods of obtaining functional								
	nanomaterials are studied: carbon								
	semiconductor, photonic crystals, films of								
	surfactants. Types and methods of								
	obtaining structural nanomaterials								
	(metals, ceramics, composite materials)								
<u> </u>	materials)	,	1						

	7	properties of structural nanomaterials.			1				
21		The purpose of the discipline is to acquire	5						
21		knowledge of the design of digital	3				v		v
		machine-building industries, methods and							
		means of construction based on							
		information and production technologies.							
		The discipline examines the concept of							
		information support for the life cycle of							
		products, the principles of building							
	Digital Systems of	automated production, the methodology							
	industriai	of end-to-end automated design of							
	Manufacturing	mechanical engineering products. As a							
		result, students will be able to develop							
		highly efficient technological processes							
		and equipment using modern computer-							
		aided design systems, create new							
		technical solutions in the field of							
		mechanical engineering technology,							
		equipment and tools.							
22		The purpose of the discipline is to master	5			V			v
		professional knowledge on additive							
		manufacturing technologies and their							
		application in mechanical engineering; to							
		form an idea of the procedure for							
	Additive	preparing products for reproduction using							
	manufacturing	additive technologies; to study software							
	technologies and	tools used to prepare product models. The study of basic additive technologies;							
	equipment	materials used in additive manufacturing;							
		post-processing technologies of products.							
		Skills of 3D printing of products,							
		assessment of their quality, selection of							
		equipment for various methods of							
		additive manufacturing are acquired.							
23		The purpose of the discipline is to master	4		v	v			v
		the technology of production of different							
	Dina maduation	types of pines. The production of pines is							
	Pipe production technologies	being studied, starting from seamless							
	technologies	pipes on aggregates with automatic,							
		continuous, pilgrim, three-roll rolling							
		mill, on an aggregate with a rack-and-							

	1			1	1	-	-	- 1			1
		pinion mill for continuous non-stop rolling of pipes to the production of									
		seamless and cold-formed pipes on batch									
		mills. The main technologies of quality									
		and finishing of pipes are described at the									
		modern scientific level									
24		The purpose of the discipline is to acquire	4		v		v		v		
		theoretical foundations for determining									
		the forces of external friction in various									
		processes of metal processing by									
		pressure. Methods for determining the									
		coefficient of friction in plastic									
Tribolos	gy in pressure	deformation processes are studied. The									
treatmen	nt 1	issues of the theory of lubricating action,									
		the range of effective technological									
		lubricants, methods of their production, as									
		well as lubrication systems and their									
		operating conditions are considered. Described methods of testing lubricants									
		and their technical and economic									
		indicators									
25		The purpose of studying the discipline is	5			v		v		v	
		to form theoretical and practical				·					
		knowledge in the field of industrial									
		ergonomics, design of ergatic systems,									
		types and basic functions of systems. The									
		tasks of ergonomics, the essence of									
Ergonor	mics of	human labor activity, engineering									
producti	ion	psychology, the severity of work and its									
product		integral assessment are studied. The									
		content and features of ergonomic design,									
		methods of research of sensorimotor									
		activity in work. Skills of designing and									
		evaluating workplaces, ergodesign of professional equipment and personal									
		protective equipment are acquired									
26		The purpose of the discipline is to acquire	5					v			v
Occupat	tional Health	knowledge on ensuring the safety of life						*			•
	Safety for	in additive manufacturing. The discipline									
Additive	e	is based on the study of normative and									
Manufa	criiring	technical documents on labor protection,		1		1					

work safety in areas equipped with
additive equipment. The main categories
of work in additive manufacturing are
considered: material extrusion, powder
layer melting, photopolymerization in a
bath, material jet processing, binder jet
processing, sheet lamination.
Classification of hazards arising during
the operation of additive machines and
equipment. Safety and security measures
for work on additive equipment.

5. Curriculum of the educational program

NJSC "KAZAKH NATIONAL RESEARCH TECHNICAL UNIVERSITY named after K.I.SATPAYEV

APPROVED
Chairman of the Management BoardRector of Kazntu damed after K.Satpayev
H.M. Begentaev

CURRICULUM

of Educational Program on enrollment for 2024-2025 academic year

Educational program 7M07228 - "Advanced materials processing technologies", Group of educational programs M113 - "Technology of materials processing by pro-

r or m or s	study: full-time Dur	ation of s	tudy: 2 ye	аг		Acad	emic d		aster of te		
Discipline	Name of disciplines	6.	Total	Total	Classroom	SIS (including	Form	Allocation of face-to-face training based courses and semesters			
code	Name of disciplines	Cycle	amount in credits	hours	amount lec/lab/pr	TSIS) in	of	I co	urse	2 cc	urse
			credits		lec/lab/pr	hours	control	1 semester	2 semester	3 semester	4 semeste
CYCLE C	OF BASIC DISCIPLINES (BD)										
			T		le (universi	-					
LNG213	Foreign language (professional)	BD UC	5	150	0/0/3	- 105	Е	3			
HUM214	Management psychology	BD UC	3	90	1/0/1	60	E	3			
HUM212	History and philosophy of science	BD UC	3	90	1/0/1	60	Е		3		
HUM213	Higher school pedagogy	BD UC	3	90	1/0/1	60	Е		3		
	In all a second		compo	nent of	choice						
MSM227	Rolling production equipment and technologies	BD CCH	5	150	2/0/1	105	Е	5			
MSM228	Pressing and drawing technologies										
MSM220	Technological processes of additive manufacturing	BD CCH	5	150	2/0/1	105	Е	5			
MNG782	Sustainable development strategies	DD CCII	,	130		105					
MCH270	Mechanical systems in the process of pressure treatment	BD CCH	5	150	2/0/1	105	Е			5	
MNG781	Intellectual Property and Research	виссн	'	150	2/0/1	103	L			3	
CYCLE	OF PROFILE DISCIPLINES (PD)										
0.000			.1.		,						
	M-2. The module of digitalization	oi materia	als process	ing by	pressure (u	niversity c	ompon	ent, compo	nent of che	oice)	
MSM201	Virtual factory and Augmented reality production	PD UC	5	150	2/0/1	105	Е	5			
MSM218	Digital design and modeling	PD UC	5	150	2/0/1	105	Е	5			
MSM202	Advanced digital production monitoring	PD UC	5	150	2/0/1	105	Е		5		
MSM206	Innovative processes of digitalization of machine-building production	PD UC	5	150	2/0/1	105	Е		5		
MSM210	CAE/PLM of machine-building production	PD CCH	5	150	2/0/1	105	Е			5	
MSM237	PLM technologies										
IND209	Multipurpose equipment in digital production										
MSM234	Organizational and technical bases of flexible automated production	PD CCH	5	150	2/0/1	105	Е		5		
MCH230	Technological bases of powder										
MCH279	Nanomaterials for pressure treatment	PD CCH	5	150	2/0/1	105	E		5		
MSM211	Digital systems of machine-building production										
MSM236	Additive manufacturing technologies and	PD CCH	5	150	2/0/1	105	Е			5	
MSM229	Pipe production technologies										
MSM230	Tribology in pressure treatment	PD CCH	4	120	2/0/1	75	Е				4
MSM235	Ergonomics of production Occupational health and safety of	PD CCH	5	150	2/0/1	105	Е			5	
MSM207	additive manufacturing					,00					
		M	I-3. Practic	e-orier	ted module	2					
AAP273	Pedagogical practice	BD UC	8							8	
AAP256	Research practice	PD, CCH	4								4

		M-4,	Experim	ental re	search me	odule			_		
AAP268	Research work of a master's student, including internship and completion of a master's thesis	RWMS UC	4					4			
AAP268	Research work of a master's student, including internship and completion of a master's thesis	RWMS UC	4						4	2	
AAP251	Research work of a master's student, including internship and completion of a master's thesis	RWMS UC	2							2	
AAP255	Research work of a master's student, including internship and completion of a master's thesis	RWMS UC	14								14
		M-:	5. Module	of fina	al attestati	ion			-		
ECA212	Preparation and defense of a master's thesis	FA	8								8
	Total based on UNIVERSITY:						-	30	30	30	30
									60	(60

	Number of credits for the entire perio	od of s	tudy					
	Cycles of disciplines	Credits						
Cycle code			university component (UC)	component of choice (CCH)	Total			
BD	Cycle of basic disciplines		20	15	35			
PD	Cycle of profile disciplines		24	29	53			
	Total for theoretical training:	0	44	44	88			
	RWMS				24			
FA	Final attestation	8			8			
	TOTAL:	8	44	44	120			

Decision of the Academic Council of Kazntu named after K.Satpayev. Protocol № 44 or " 12 " 04 20 24 y.

Decision of the Educational and Methodological Council of Kazntu named after K.Satpayev. Protocol № £ or "19" 04 20 24 y.

Decision of the Academic Council of the Institute E&ME. Protocol No 4 or "19" 01 20 14 y.

Board Member -Vice-Rector for Academic Affairs

E&ME Institute Director

ME Department Head

R.Uskenbaeva

K.Yelemessov

E.Nugman 1. Dyusebaev

Representative of the Council for EP from Employers_